Exercise: There are no simple groups of order 300
Sduttion [6]=300 = 2²·3·5²
$$n_p = |SP_p(G)|$$
 (p=2,3.5)
^{By} Sylow II: $n_5 \equiv 1 \pmod{5} 8 n_5 | 12 \Rightarrow n_5 = 1 \text{ or } 6$
· If $n_5 = 1$, then there is a unique 5-Sylow subgroup, P, which
onust he normal and also [D]=25 \Rightarrow DHield of
· 6 is not simple.
· 1f $n_5=6$, then the conjugation action of 6 on the set
 $S = \frac{1}{2} \operatorname{Conjugates} d P_3 = \frac{1}{2} \operatorname{gPy}^{-1}$: ge6] (Pa 5-Sylow)
(d size $|S| = 6, \text{ by Sylow II}$)
yithder a homourophirm
 $Q: G \longrightarrow Sym(S) = S_6$
or bit: $G \cdot P = S$ (action is transitive)
Chim Action is soft furthful , i.e., keer(4) + Se3
[Indeed, [G]=300 and [Se] = 720
If 4 injective, then $\Phi(G) \leq S_6$, and so, by Lagrange,
 $300 | 720 - false$
Mircover, keer(4) = 6 - since action is transitive
(ker $\theta = 6$ means $S^2 = 5$, induitiful
Hence [z:= kar(9) is = proper, non-trivial normal
 $Subgroup of G$
: 6 is not simple.

Flop Let $G = G_1 \times G_2$ be a direct product of two groups.

Then every p sylow subgroup of G is a direct

product
$$d$$
 p-silon subgroups d G_1 and G_2 .
Warning In general, if $H \leq G_1 \times G_2$, it is not the
Huat $H = H_1 \times H_2$, the some $H_1 \leq G_1$ and $H_2 \leq G_2$.
Example $G = Z_2^{(n)} \times Z_2^{(n)}$ has 3 subgroups of order 2:
 $H_1 Z_2 \times 30 = \langle (1,0) \rangle$, $H_2^{-1}(0) \times Z_2 = \langle (0,0) \rangle$
and $H = \langle (1,1) \rangle$. Then $H \neq H_1 \times H_2$, the any $H_1 \leq G_1^{(n)}$
indy have:
 $H \leq H_1 \times H_2 = Z_2^{(n)}$. Then $H \neq H_1 \times H_2$, the any $H_1 \leq G_1^{(n)}$
 $H \leq H_1 \times H_2 = Z_2^{(n)}$. Then $H \neq H_1 \times H_2$, the any $H_1 \leq G_1^{(n)}$
 $H \leq H_1 \times H_2 = Z_2^{(n)}$. Then $H \neq H_1 \times H_2$ is the source of G is G itself.
Free the projections on to the two factors (Loth are homomorphisms).
 $H = H_1 \times H_2 = G_1^{(n)}$ are subgroups $d = G_1^{(n)}$. Done once we
is (Laim : (1) $P = P_1 \times P_2$
(ii) $P_1 \in S_1^{(n)}(G_1)$
 $H = G_1^{(n)}(G_1) = H_1 \times P_2$
(ii) $P_1 \in S_1^{(n)}(G_2)$
 $H_1^{(n)}(G_1^{(n)}) = P_1 \times P_2$
(ii) $P_1 \in S_1^{(n)}(G_1)$
 $H_2^{(n)}(G_1^{(n)}) = P_1 \times P_2$
(ii) $P_1 \in S_1^{(n)}(G_1)$
 $H_1^{(n)}(P_1) = (P_1 \times P_2) = G_1^{(n)}(G_1)$
 $H_1^{(n)}(P_1) = (P_1 \times P_2) = (P_1 \times P_2)$
 $H_1^{(n)}(P_1) = (P_1 \times P_2) = (P_1 \times P_2)$
 $H_2^{(n)}(G_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)})$
 $H_2^{(n)}(G_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)})$
 $H_2^{(n)}(G_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)})$
 $H_2^{(n)}(G_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)})$
 $H_2^{(n)}(G_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}) = (P_1^{(n)}$

So,
$$g_{1}g_{2} \in P \Rightarrow O(g_{3} = p^{t_{1}} \Rightarrow O(g_{1},g_{2}) = p^{t_{1}} (k=max(h,k))$$

 $\therefore R \times P_{2} is a p-group
 $\overrightarrow{Ps} p \cdot Sylow$ $P = P_{1} \times P_{2}$
(i) Suppose one of the $F_{1}'s$, soy P_{1} , is $ut p \cdot Sylow(inG_{1})$
But we just saw that P_{1} is a $p - group, so$,
 $\exists Q_{1} \in Syl_{p}(G_{1}) \quad st. P_{1} \notin Q_{1} = G_{1}$
 $? P = P_{1} \times P_{2} \notin Q_{1} \times P_{2} = G_{1} \times S_{2} = G$
 $\therefore ReP_{1} \text{ one } p \cdot Sylow = Contradicts P \cdot s \cdot p \cdot Sylow!$ QED
Theorem let G be a finite group. If all the
Sylow subgroups of G one normal, then G is the
direct product of the Sylow subgroups.
 $\left[\left(P \leq G + V \neq Syl(G_{1}) \right) \Rightarrow \left(G = TT + P \right) \right]$
where $Syl(G) = \bigcup Syl_{p}(G)$
inter the hypothesis of the theorem is coglawalent to
 $N = 1 - V \neq 1 \cdot G_{1}$ ($M \cdot Sylow(it)$)
 $\left[\begin{array}{c} That is s if \left[Gl = P_{1}^{h_{1}} - P_{1}^{h_{1}}, aud \left[T_{1} = I \right] \cdot V_{1} \\ then & G = P_{1} \times T_{1}, were T_{1} \times T_{1} \\ refore for $M_{1} = M_{1} = 1$. Let $P_{1} \times P_{2}$ be the correspondy$$

Sylow subgroups. (
$$|\mathbb{P}_{1}| = \mathbb{N}^{k_{1}}$$
). Then:
(1) $\mathbb{P}_{1} \cap \mathbb{P}_{2} = \{e^{2}\}$ (1) $[\operatorname{Since}_{0} = ge^{2}, \mathbb{P}_{1}, \mathbb{P}_{2} = ge^{2}, \mathbb{P}_{2} = ge^{$

Example Abelian groups of order
$$60 = 2^2 \cdot 3 \cdot 5$$

Abelian groups of order $4 : \mathbb{Z}_2 \otimes \mathbb{Z}_2, \mathbb{Z}_4$
is in $3 : \mathbb{Z}_3$
Auswer: $\mathbb{Z}_2 \otimes \mathbb{Z}_2 \otimes \mathbb{Z}_3 \otimes \mathbb{Z}_5 \cong \mathbb{Z}_{30} \otimes \mathbb{Z}_2$
 $\cdot \mathbb{Z}_4 \oplus \mathbb{Z}_3 \otimes \mathbb{Z}_5 \cong \mathbb{Z}_{40}$
In general, using the isomorphism
 $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{40}$
We can remate these finite Abelian groups as
 $\int 6 = \mathbb{Z}_n \oplus \mathbb{Z}_n \oplus \cdots \oplus \mathbb{Z}_n \sqsubseteq$
with $n_1 \ge \cdots \ge n_k$ and $n_i \mid n_{i_1} \mid \text{for } i = 2, \cdots , k$.
Example $\mid 6 \mid = 24 = 2^3 \cdot 3$
 $\mathbb{Z}_8 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_{20} \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 = -2 \text{ gen}$
 $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \cong \mathbb{Z}_6 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2 = -3 \text{ gen}$